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Assignment for DH/MD

* Convene a WG supporting the development of “the "perfect” high-
energy photon detector: next generation performance in energy,
position, direction and timing measurements in a high-rate
environment.”

* Thus this is a view of the Project X (and pre-Project X) world through
calorimeter-colored glasses
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Experiments with calorimeters (or not)

* Muons
— WU~ —e” conversion, g-2, ut —»>etete, ut —>ety
— Improving limits as well as improving the precision of branching fraction,
conversion rate and g-2 measurements

* Kaons
— Kt=ztvw, K)— 20w
— improving limits (K) and/or making branching fraction measurements
(K*) (KD

e NN oscillations

All these experiments pose different design and performance
constraints on calorimeter requirements

= Efficiency, energy resolution, spatial resolution, angular resolution,
time resolution, rate capability, radiation hardness, cost
» Energy range is MeV to GeV (this is not the LHC or ILC)

| will discuss the physics objectives only in the sense of the derived requwemints
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Parallel sessions

¥ Date Duration Type Title Presenter

Sat 2012-Jun-16 11:00  0Oh10O! Introduction Prof. HITLIM, David
2012-Jun-16 1110 00Oh20° MEG Calorimeter experience and upgrade Prof. MOLZOMN, William
2012-Jun-16 11:30 00h25' mu to & gamma (converted), ece DEJONGH, Fritz
2012-Jun-16 11:55 00h25' u MuZe calorimeter design and extrapolation Prof. HITLIN, David
2012-Jun-16 16:00 00h25 ’ Mew crystal development Or. ZHU, Ren-yuan
2012-Jun-16 16:25 00h25 PbF2/SIPM beam test Or. WINTER, Peter
2012-Jun-16 17:00  00Oh30' Discussion

Mon 2012-Jun-18 08:50 00h25' Kaon experiment calorimetry requirements Dr. LITTENBERG, Laurence
2012-Jun-18 0915 00h25 ORKA calorimeter - | GATTO, Corrado
2012-Jun-18 09:40 00h25' ORKA Calorimeter - |l Dr. MAZZACANE, Anna
2012-Jun-18 10:05  00h25 KOPIO preradiator and calorimeter Dr. POBLAGUEV, Andrei
2012-Jun-18 14:.00 00h25' Teflon-based scintillator Dr. YEH, Minfang
2012-Jun-18 14:25 00h25 KTe\V Csl calorimeter WORCESTER, Elizabeth
2012-Jun-18 14:50 Cl{]hm'n n Calorimetry requirements for an nnbar experiment Prof. KAMYSHKOV, Yuri
2012-Jun-18 15:00 00h30' Discussion

+Wed June 20 Organization for writing of FWP document(s)




Example Power Staging Plan for the Research Program

470 700 kW** 515-1200 KW** 1200 kW 2450 kW 2450-4000 kW
_ 15 kW +0-50 KW**  0-42 KW* + 0-90 kW**  0-84 kW* 0-172kW* 3000 kW
20 kW 0-20 kW 0-20 kW* 0-172kW* 1000 kW
~8 kW 80 kW 1000 kW 1000 kW 1000 kw
0-30 kW 0-75 kW 1100 kW 1870 kW 1870 kW
(<30% df from MI) (<45% df from MI)
none 0-900 kW 0-900 kW 0-1000 kW  0-1000 kW
none 0-900 kW 0-900 kW 0-1000 kW 0-1000 kW
none 0-900 kW 0-900 kW 0-1000 kW  0-1000 kW
4 8 8 8 8
735 kW 2222 kW 4284 kW 6492 kW 11870kW




Muon experiments

* Bill Molzon reviewed the MEG experience & extrapolation

* Fritz Dejongh discussed a new idea for a next generation experiment
that converts the photon

— Measures three charged tracks
— Baseline concept does not use a calorimeter

* DH discussed Mu2e

* Peter Winter discussed g-2




MEG status

* MEG is background limited above 1012 branching fraction largely due
to resolutions worse than proposal values

* Nonetheless, should reach a 90% CL sensitivity below 1012 with data to
be collected through ~1 year from now

* We are considering upgrades that could improve resolutions (and
hence background rejection) and that could be implemented within ~2

years and yield significantly improved sensitivity within 5 years
—Upgraded liquid xenon calorimeter — discussed here

—New drift chamber — improved energy, angle measurements

—New timing counters — improved intrinsic resolution, better match to drift chamber

—Possible active target — improved angle determination
—Muon stop rate increase by up to a factor of 3

* We plan to submit a proposal for the upgrades by the end of the year

Bill Molzon
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MEG signal and background signatures

Radiative decay background Accidental background
ur—>evvy
ur—etvv
v >
ur—>e* vvy or ete vy

- - )

e
vV

BE.:, = 180° Suppressed by
E.=E =52.8MeV * decay kinematics
= {

Suppressed by

* Timing, energy, angle
resolution

Dominates background at rates

* energy, angle resolution needed to reach 10-33

[
s
III|III|

E, rising
| linearly

Events § (L2000 MeV)
L3
X
LY
Fi
/ f |
7
Events ({04667 MeV)
s2:

Bill Molzon

@‘ﬂ‘“uw(&

v

%?ONH':“

d&u E‘N},‘I

o,



MEG Lxe calorimeter

Liguid Xenon

COBRA Magnet Scintillation Detector
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Drift Chamber

Relatively high light yield, uniform response

* No self-absorption of scintillation light: Density 2.95 glem?®
attenuation only from impurities Boiling and melting points 165 K, 161K
+ ~1000 | liguid xenon (largest LXe volume) Energy per scintillation photon 24 eV
» ~860 mesh phototubes on surface, in LXe Radiation length 277 cm
* Thin window to reduce photon conversions Decay time 42,22 45ns
* Goal is to measure photon properties: Scintillation light wave length 175 nm
— Position:  og,,c =5 mm Scintillation light absorption length > 100 cm
— Time: Ogus = 00 ps Attenuation length (Rayleigh scattering) 30 cm
— Energy: Oappe = ~900 keV at 52 MeV Bt itics 174

— Bill Molzon




MEG LXe calorimeter
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Advantages and disadvantages of an LXe calorimeter

» Advantages

— Uniform ratio of light produced to energy deposited — fluctuations in fraction of ionization
vs. light contributes to resolution at low energy if both are not measured

— No dead material in active volume

— High light yield — typically ~¥200k photo-electrons for 53 MeV photon

— Signal is fast — decay time ~50 ns

— Very long absorption length limited by impurities

— Can fit for vertex position in all dimensions — important in determining photon time at
vertex

* Disadvantages
— Lack of optical separation means pileup is not easily isolated and affects signals far away

— Relatively short scattering length means light paths can be complicated, with reflections
important to observed light distribution

— Need for cryostat reduces acceptance due to photon conversions in the cryostat wall

— Granularity of photocathode coverage on the walls complicates position and energy
reconstruction for showers near the wall

— Calibrating each photo-detector for quantum efficiency times gain is arguably more difficult
than it is for isolated detector elements

Bill Molzon
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Pileup removal

* Events with clear pileup signal are identified and handled in a variety of ways

— Events that have spatially separated showers corrected by removing secondary peak and
replacing tube energies with templates based on light in unaffected regions

— Events that have clear evidence of showers overlapping in time are fit to superposition of
pulses of known shape.

— Events that have evidence of pileup, but
without clear separation in time or space
are eliminated
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Potential calorimeter upgrades

* Limitations to performance

— Resolution for early conversions worse due mostly to granularity of photo-cathode coverage

— Resolution near edges worse due to less than optimal pointing geometry of phototubes

— Stochastic variation of resolution and absolute calibration with 3D position in calorimeter
that is not completely understood. Likely due at least in part to quantum efficiency and gain
calibration errors.

— Effects of scattering, particularly with reflections off walls, complicates energy
determination and likely contributes to resolution

* Upgrades being considered
—Replace the phototubes on front face with MPPCs (SIPMs)

* Reduce the granularity of the photo-cathode coverage
* Possibly increase the photo-cathode coverage
* Less dead space and material at the front face — increased efficiency
—Use non-reflective coating on the interior face of the cryostat to reduce reflections
* Plenty of photo-electrons, so decrease in total light yield is not a problem
» Will likely improve all of energy, timing, position resolution
—Modify phototube orientation on side walls to be in a single plane
* Reduces shadowing
—Increase active size in the Z direction
* Improves light collection and resolution

Bill Molzon |
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MPPCs for the front face of the calorimeter

» Use large area MPPCs 12x12 mm?
» A few potential suppliers
* Mount them on ceramic base +

printed circuit board e [y |
» Up to 3500 devices ﬁjﬂ\ﬁ\-;‘b
* Many things need to be studied 5 i

— Intrinsic non-linearity with large dynamic range — correctible
— Absorption of vuv photons in protective layer — remove it

— Reflection from silicon surface — anti-reflective coating

— Cross-talk between pixels — cut channels

— After-pulsing, worse at low temperature

— Potential for increased noise summing many signals

. ‘."f
DD Boddew
Teacce
rreasd

Bill Molzon |
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MEG summary

* MEG is background limited above 1012 branching fraction largely due
to resolutions worse than proposal values

* Nonetheless, should reach a 90% CL sensitivity below 1012 with data to
be collected through ~1 year from now

« We are considering upgrades that could improve resolutions (and
hence background rejection) and that could be implemented within ~2

years and yield significantly improved sensitivity within 5 years
—Upgraded liquid xenon calorimeter — discussed here

—New drift chamber — improved energy, angle measurements

—New timing counters — improved intrinsic resolution, better match to drift chamber

—Possible active target — improved angle determination
—Muon stop rate increase by up to a factor of 3

* We plan to submit a proposal for the upgrades by the end of the year

Bill Molzon
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u—e*y with converted y

* Goal: Path to 10-1° sensitivity using
— Intense stopped muons beams from Project-X
— Monolithic pixel detectors
— Time of flight
— Calorimetry?

* EXxisting branching fraction limits

MEGA: < 1.2 x 1011 (1999)
Using converted photons
converter: 9% radiation length (in each of 3 layers)
6% duty cycle
1.5 x 107 stopped muons/sec

MEG: < 2.4 x 102(2010)
Using LXe calorimeter
Expects to reach few x 1013

Fritz Dejongh
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Sensitivity goals with Project X cold » beam

*Use project X to increase Ru (the rate of stopped muons) and signal rate
*Problem: Accidental coincidence rate increases as Ru? (instantaneous)
*Need

*100% duty cycle
*Thin converter
*Thin detectors

*Resolution limited only by energy loss and multiple scattering

* Will need 3 x 10*! stopped muons/sec
— Mu2e: 5 x 10%° with 8 KW proton power

* However, need it with small, thin target
— A challenge for Project X, but seems plausible

What if we discover BR = 1014?
Can increase Ru by 100 and have S/N =1
Would obtain 10 events and precision BR!

* Need 3 x 10*® stopped muons/sec
— Advanced muon cooling at a high project X stage #
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A simple geometry seems plausible
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Issues

L % viewer-0 {Openlnventori)

Fila Etc  Help

* Need target extended

in z ( ~150 cm), since

y 1S pointing to potential
vertex from a long distance
TOF?

« Calorimetric confirmation?
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MuZ2e Search for 4~ — e~ conversion at 1016

Production Solenoid * Delivers ~ 0.0016 stopped p- :
- Production target per incident proton Detector Solen0|_d
« Graded field » 1010 Hz of stopped muons * Muon stopping target
» Tracker
Transport Solenoid « Calorimeter
« Collimation system selects muon charge and® Warm bore evacuated
momentum range to 10 Torr
« Pbar window in middle of central collimator

Production Solenoid Proton Beam
Detector Solenoid

= e

o L
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Calorimeter requirements

The purpose of the calorimeter is to confirm that a reconstructed track of a iz — e
conversion electron candidate is well-measured, and was not created by a spurious
combination of hits in the tracker.

1.

2.

-5
=4
o

Measure the position of the conversion electron — o(x) < O(1 cm).

Compare the energy deposited in the calorimeter to the reconstructed track
momentum — o(E) < O (2%), with an uncertainty in the energy scale small
compared to the resolution.

Compare the time of the energy deposit in the calorimeter to the time
determined from the tracker — o(t) O (<1 ns).

Provide particle identification to separate, for example, electrons from muons.
Provide a trigger that can be used for event selection

Maintain functionality in a 50 Gy/year radiation environment with light yield
loss < 10%

Requirements met by an array of ~2100 LYSO crystals (11 X,)

JE
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Calorimeter - vane design
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Calorimeter - Disk Geometry
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neutron background from muon capture is seen head on.




Time structure of the Mu2e beam

Muon nuclear capture
and Decay in Orbit (DIO)

b arriving at Distributions are not in scale Muon capture on Al has two

Stopping Target

A\ 4

1695 ns

A

dominant final states:

- nuclear capture, ~60% = n, p, y

- muon DIO, ~40% = high energy
tail is an irreducible background
to u to e conversion. Suppressed
by excellent momentum resolution

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time (ns)

Required extinction < 1010

Prompt beam-related background Radiative Pion Capture

Suppressed by a delayed “live” Negative pions stopped in the Al target:
window which starts about 670 ns after 7-N—->yNZ%,y—e'e

the beam pulse. About 2 x 10 decay electrons are in the

momentum signal region for 3.6 x 10 pot

Project X CW linac allows further optimization of this time structure
(shorter pulse, for example) — Steve Holmes presentation
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Calorimeter hit rates (vanes)

* Crystal hits in a microbunch

Hits from

Hits from :
tracks born : Hits from
Total crystal : ) tracks born in
. . Hits from outside the showers only | Hottest crystal rate
hits (Rate in other vanes
generated n vanes (electrons +y (MH2z)
MHZz) (electrons +
(sec neutrons V) + HI)
+v)
BO50 | 768 (454) 0.5 245 9 512 2.2 (Raw 5 Col 1)
* Crystal hits in live window (t > 700ns)
Single crystal hits rates per pbunch (vane normalized)
Hits from Hits from .
tracks born : Hits from

Total crystal : ) tracks born in

) ) Hits from outside the showers only
hits (Rate in other vanes

generated n vanes (electrons +y
MHZz) (electrons +
(sec ) + HI)
neutrons + y) Y
500 (503) 0 147 6 348

David Hitlin

June 2012
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Can the MuZ2e calorimeter function at Project X?

The purpose of the calorimeter is to confirm that a reconstructed track of a iz — e
conversion electron candidate is well-measured, and was not created by a spurious
combination of hits in the tracker.

crystal size

1. Measure the position of the conversion electron — o(x) < O(1 cm). r
M

2. Compare the energy deposited in the calorimeter to the reconstructed track 7 .,
momentum — o(E) < O (2%), with an uncertainty in the energy scale small t

compared to the resolution. int

3. Compare the time of the energy deposit in the calorimeter to the time t,
determined from the tracker — o(t) O (<1 ns).

4. Provide particle identification to separate, for example, electrons from muons. t
5. Provide a trigger that can be used for event selection t

6. Maintain functionality in a 58 Gy/year radiation environment with light yield rad
loss < 10% 500-5000 hardness

SOTUTE
o A
= e\
= \
=
Bl
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Effect of background on conversion electron resolution

« “Salt and pepper” background included in energy clusters
« Deteriorates energy resolution

Fraction of total Energy VS Energy Cut Off
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Scintillation pulse shapes

Fast Scintillators Slow Scintillators
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Ren-yuan Zhu
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"If a tree falls ...

* "If atree falls in a forest and no one is around to hear it, does it
make a sound?”

* "If a crystal emits light and no one is around to see it, does it
scintillate?”

* BaF, is among the fastest scintillating crystals (0.6-0.8ns), but it has
a larger, slower, component (630ns)

T T 30 Total light output
> gataicanos), £ 1.2 x 10* photons/MeV
t 08 \Jlnduw S
= 20 &

}_.. —

Z 06 O

L -15 &

= L

E 04

.|

L

12 ;
15% IS T T TS NN NN N T ‘0

200 300 400

600-800 ps o

7
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"If a tree falls ...

* "If atree falls in a forest and no one is around to hear it, does it
make a sound?”

* "If a crystal emits light and no one is around to see it, does it
scintillate?”

* BaF, is among the fastest scintillating crystals (0.6-0.8ns), but it has
a larger, slower, component (630ns)

T T T T 1] 30 Total light output
10— R3197 R2059 - 4
Cs—Te Cathode Balkali Cathode |, 3% 1.2 x 10* photons/MeV
i: Synthetic Siica Synthetic Siica™] >
¢n 08— Window Window O
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"If a tree falls ...

* "If atree falls in a forest and no one is around to hear it, does it
make a sound?”

* "If a crystal emits light and no one is around to see it, does it
scintillate?”

* BaF, is among the fastest scintillating crystals (0.6-0.8ns), but it has
a larger, slower, component (630ns)

N S I B B N R
101 R3197

Cs-Te Cathode
Synthetic Sihca
0 8 — Window

30 Total light output
1.2 x 10* photons/MeV

Can solar blind SiC
APDs, which

now exist at 100 um
diameter, be made
larger, and combined
with a thin film optical
lo filter, to make BaF, a
Anm) truly fast scintillator?
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A fast crystal “figure of merit”

Crystal Relative LY Total LO LO/in ns LOin 0.1ns LY in 0.1ns
S-S ) A, (%) T, (ns) A, (%) T, (ns) (p.e./MeV, (p.e./MeV, (p.e./MeV, (photons/MeV)
XP2254B) XP2254B) XP2254B)
BaF, 40.1 91 650 9 0.9 1149 71.0 11.0 136.6
LS0:Ca,Ce 94 100 30 2400 78.7 8.0 110.9
LSO/LYSO:Ce 85 100 40 2180 53.8 5.4 75.3
Cek; 7.3 100 30 208 6.8 0.7 2.6
BGO 21 100 300 350 1.2 0.1 2.5
PWO 0.377 80 30 20 10 9.2 0.42 0.04 0.4
LaBrs:Ce 130 100 20 3210 185.8 19.0 2299
LaCly:Ce 55 24 570 76 24 1570 49.36 5.03 62.5
Nal:Tl 100 100 245 2604 10.6 1.1 14.5
Csl 4.7 7 30 23 6 131 7.9 0.8 10.6
Csl:Tl 165 100 1220 2093 1.7 0.2 4.8
Csl:Na 88 100 690 2274 3.3 0.3 4.5

Motivates R&D on fast

crystals and appropriate
solid state readout

N
S

mdemm—"—l |

Csl(Na) LaBra(ce)  Nal(Tl)

PWO LSO LYSO LaCl,(Ce)

Ren-yuan Zhu
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Fast scintillating crystals

N T T

Density (g/cm?) 7.40 4.54 6.71 4.89 451  6.16

Radiation Length (cm) 1.14 3.04 1.38 2.03 1.86 1.70
Moliére Radius [em) 2.07 2.87 2.23 3.10 3.57 2.41
Interaction Length (em) 20.9 27.3 22.2 30.7 39.3  23.2
Z value 64.8 333 57.9 51.6 54.0 50.8
dE/dX (MeV/ecm) 9.55 6.70 8.88 6.52 5.56 8.42
420 420 430 300 420 340
Emission Peak® (nm) - - -
Refractive Index® 1.82 1.80 1.85 1.50 1.95 1.62
100 40 42 4.2
Relative Light Yield®-© a8 13
Decay Time? 40 70 65 650 30
(ns) 0.9 6

d(Ly)/dT © -0.2 -0.3 -0.7 -1.9 -1.4



g-2 has calorimeters to detect the decay electron

24 calorimeter stations

Scallop vacuum chamber

Lead scintillating fiber
calorimeter with PMTs

Full waveform digitized

Peter Winter
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Design constraints

m Detector response: fast scint
¢ Pulse-to-pulse separation ~ 5 nsec

m Gated off for ~10 us was required
¢ Back onin 1 ps to 99.9% of gain

¢ Stability of gain a challenge (need <0.1%,
full simulation required)

m Pileup algorithms clever,

¢ But, 0.08 ppm systematic remained from
percent-level pileup (see later)

« E821 Instantaneous rates:

— At ~25 us after injection, E > 1 GeV: Each calo sees up to 0.9 MHz
— With “no” threshold, the rate is up to 1.8 MHz

 New Experiment Challenge:
— Determine average rate; it could be higher (up to 3x !)
— How to manage pileup and keep average rate on photo-detector “low”?

Peter Winter
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Candidate radiators

Material PbF2 PbWOQO4 W / SciFi
(undoped)

5

Type Cerenkov Cerenkov | Sampling | &
+ Scintillation §

&
Radiation length 0.93 cm 0.89 cm 0.69 cm
Moliere radius 1.8 cm 2.0cm 1.73 cm

(Cerenkov) .
PbF, Cerenkov spectrum

Typical resolution| 3-5% 2-5% 12 %

Peter Winter
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Photodetector choices: SIPM vs PMT

Hamamatsu R9800
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Light yield at 4 GeV

—

Active area: 500 mm? Active area: 90 mm?
4 GeV 2
32 fndf 10876
4 GeV ¥ 1 ndf 18473 -
350F N 3318+95
i M 1M08+21.2 C
1000~ a0 - Mean 1.613e+04+ 29
C Mean 1.969e+04 + 12 r
- L ] +
so0[- o 479+ 16.1 250F- 178382
600 - 0
- G/E(lGeV)z5% 150 c/E(lGeV)zQ Yo
A0 E
i 100
200 s0f-
{:I_ N NN NN N NI AT _||||||||||||||||||||||||
17000 18000 19000 20000 210000 22000 23000 ]&)ﬂ'ﬂ 12000 14000 16000 185000 20000 22000
Sum of Areas Sum of Araas

Peter Winter
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Kaon experiments

* Laurie Littenberg and Andrei Poblaguev discussed KOPIO
— 9 detection with a preradiator and a shashlyk calorimeter

* Corrado Gatto and Anna Mazzacane discussed ORKA
— Shashlyk and ADRIANO options

* Elizabeth Worcester discussed the KTeV caloroimeter in detail




he Challenge of KOPIO

* “Nothing in — Nothing out”
« B(K —»>7%) ~ 3x10! = need huge flux of K’s

— rates inevitably rather high
« Kinematic sighature weak (2 particles undetectable)
« 79-related backgrounds with up to 10 times larger
« Veto inefficiency on extra particles must be <10

* Huge flux of neutrons in beam
— can make 70 off residual gas — require high vacuum
— halo must be very small
— hermeticity requires photon veto in this beam

* Need a convincing measurement of background

Laurie Littenberg
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Calorimetry for a KOPIO
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25 GeV Protons R

200 ps
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Laurie Littenberg, Andrei Poblaguev gy




Calorimetry for a KOPIO-type experiment

3 25 GeV Protons A

200 ps, | k h
e

40 ns

3 constraints (+m_,) /ﬂl
(Py1.Py2.ybT1-T2) Y- 4 direction
- (+PID)

#
-
Vs
ya

K LY 7 yb=beam height
L

AN A
CW linac and pencil beam at
Project X are an advantage here

V7 (Energy and direction)

=

Il




The KOPIO calorimeter challenge

« Dealing with rather low energy photons

« Must measure photon direction well
— at least 25mr at 250MeV

« Must measure energy very well
— atleast 3%/E

* (In the AGS version, these two functions were spread
between two systems — better if one system could do both)

 Must measure time to ~100ps/VE

« Must serve as super-efficient veto!
— No dead material

« Must do all this in the presence of very high rates.

Laurie Littenberg
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Preradiator — convert & measure y properties

\ /N

Cathode
strip Extruded 64 Layers (4% X,/layer, 2.7
drift Scintillator & X,) 256 Chambers

288 Scintillator Plates (1200
m?2 150,000 Channels
Readout

Laurie Littenberg

. gt‘f’;-,,\\ chambers  Bessmasd LS fibers
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Shashlyk photon calorimeter

Shashlyk modules were prototyped
and tested in beams
All required specs were met

// 7\ \\

,/",

X@Km L

TO&E cm

i | 1N | 1L

11 1
E
ke
&h
=

440 om (40 modules)

B0 cm
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KOPIO specs and tradeoffs

* 6 =2.7%NE Parameter variations
* 5,=90ps/\E :

o S(2yPR)/B=8 S(2yPR)/B=8
¢ - 25 250 V o  S(al)/B=2 "L S(ally/B=2
Oy = 25mr @ Me
* o,, =250 £ 2
X,y H s e :
2 o 2 zp
PY —_ 4 b N
c, =10%y 2
n — 1 — 1
=] =]
5 :
n o8 » o8-
Photon Ineffici
. i y 08z 0.6 08 1 1.2 T °44 0.6 0.8 1 1.2 1.4
2 ] Angular resolution wrt nominal Energy resolution wrt nominal
o ;
o
55k T
© . Total Z e ~ S(2rPR)/B=B ] | S(2yPR)/B=8
2 B e Photénuclear : S(all)/B=2 18- sS(all)/B=2
510 amapling . i i
® . * Punchthrough e 1.6}
© X
S 4 1.4
s s
610 N 1.4
2
£ 1.2p

1075%\ \\ ‘
AN
\

3 044 0.6 0.8 1 1.2 1.4 0. i .
i Time resolution wrt nominal 100 200 300 400 500 600
——

_ Microbunch width in ps
A ————

200 400 600 800 1000
Photon energy (MeV)

1 MeV visible energy threshold
90° incidence angle Laurie Littenberg p—

Signal yield wrt nominal

Signal yield wrt nominal
t




The 3%/+E shashlyk module

Transverse size

Scintillator thickness

Spacing between scintillator tiles
Lead absorber thickness

Number of the layers (Lead / Scint)
WLS fibers per module

Fiber spacing

Holes diameter in Scintillator / Lead
Diameter of WLS fiber (Y11-200MS)
Fiber bundle diameter

External wrapping (TYVEK paper)
Effective X,

Effective Ry

Effective density

Active depth

Total depth (without photo-detector)
Total weight

110x110 mm?

1.5 mm

0.350 mm

0.275 mm

300
12x15m=108m
9.3 mm

1.3 mm

1.0 mm

14.0 mm

150 um

349 mm

59.8 mm

2.75 glcm®
555mm (15.9 X))
650 mm

21.0 kG

Andrei Poblaguev
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Energy resolution

Energy spectra. APD/WFD. T Energy resolution of Shashlyk calorimeter.
= 450 = 8
6 Prototype 2 g
= 400 ;‘3‘?
220 MeV Module 4 | Medule 5 | Module & =
- & Baam 56
370 MeV B e 3
300 o
Module 7 | Module 8 | Module 8| 2 5
250 §
S 4
200
3 | % - Prototype 1, PMT/ADC.
et |:| - Prototype 2, APD/ADC.
100 2 - Prototype 2 APD/WFD.
50 1 Lines are simulation.
0 ™ “*J00 200 " 300 @00 500 815 02 025 03 035 04 045

E. ., MeV Photon energy, GeV

Energy resolution for 220-370 MeV photons:
opvr/E = (2.03£0.1)% & (3.06 £ 0.05)%/\/E (GeV)

onpn /E = (1.98+0.1)% @ (2.79 £ 0.05)%//E (GeV)
oY /E = (1.96 £0.1)% @ (2.74 £ 0.05)%//E (GeV)

Andrei Poblaguev
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Shashlyk energy resolution: exp vs simulation

E 5['0 T H H
& - Prototype 2 Experimant: i i
zﬂ - blue/green histogram. . .
_ Simutation: Simulations |
400 [ 250 MeV i i
300 i ‘L 370 MeV

-
=)
— T

o]

300 500
E, . MeV

*

100

| KOPIO -

(8]

| W - 60 laydrs of 4.0mm Sc and 1.40 mm Pb, PMT |
A - 120 layérs of 3.0 mm Sc and 0.700 mm Pb, PMT
- Wl - 240 layers of 1.5 mm Sc and 0.350 mm Pb, PMT

. * - 300 layérs of 1.5 mm Sc and 0.275 mm Pb, PMT
Geant 3 + Optical model O | & -2001ayars of 1.5 mm Sc and 0.275 mm Pb. APD

{ G.S.Atoian et al, NIM A531 (2006) 467-480 )

Energy resolution 6/E, %

Simulation:

0 05 1 15 2
Beam energy E, GeV

Andrei Poblaguev
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Photon detection inefficiency

Veto counter (2 X ; lead, 1cm Sc).
It Diameter of & beam hole is 1.5 cm.

3 200 »
©
‘S 175
13
e 150
2
2 .
E 125
[ — !
_ ) . 2 100
Simple estimate of Inefficiency 3
(due to holes): 8 75
=
=]
7['?“,2?/ r}zl {,-'-‘: %0
~ Nf 2 5.9 :
a* Léoj 25
== 0.02/0'3 (mrad?) 0

Photon detection ineffifiency
of Shashlyk calorimeter.

~ Prototype 2

® - experiment.
__Lineis snmu:atlon. .

1

20 -15 -10 -5 0 5 10 1520
Beam angle, mrad

The effect of the holes is negligible if incident angle > 5 mrad

Andrei Poblaguev
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Coda on calorimetry for K*—>ztvv

« Situation is much different — signal is not photons!
« Emphasis on vetoing — need similar vetoing as in neutral mode, but
can afford to sacrifice everything else to it
— I.e. no need to accurate determine the direction of the photons
— resolution not crucial except insofar it is correlated with efficiency

* Photon analysis important in “other” physics quarries

— Note that the stopping geometry is an impediment in many otherwise
appealing processes.

— Acceptance tends to be a strong function of energy for charged particles
— The stopping target presents unavoidable material
— RS forces non-uniform nature of photon detection.

* Be good if the whole detector was part of the calorimetry

.-n-.l
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ORKA calorimeter schematic

B4 COUNTERS —_

COLLAR COUNTER —

HOLE COUNTER —-

BEAM »

CERENKOV COUNTER

BEAM CHAMBER §—
BEAM CHAMBER 2
ACTIVE DEGRADER — 7

END CAP v VETO—"

Barrel technology: Shashlyk/ADRIANO
Barrel: R, R, L 70:145:240 cm?
Barrel Weigth: 25-30 ton

Barrel segmentation: 385 towers 32x25 cm? or 32-
64 wedges

75 kW

\1%{/ David Hitlin

—I~COUNTER
END CAP VETO

~ BEAM VETO

o

S MICROCOLIAR
COLLAR VETO
V- COUNTER
N TARGET

DRIFT CHAMEBER

Endcap technology: Csl (undoped)
Endcap size: dia:L: 98cm:25cm
Endcap Weigth: 1.13 ton

Endcap segmentation: 24 6x525 cm3+ 119
8 5x7-8x25 cm?

Corrado Gatto
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ORKA calorimeter requirements

* 70 rejection >10°-107
= yinefficiency < 10-3-10 above 20 MeV for angles 90° — 20 °
— Sensitivity down to a few MeV
— Depth > 20 X,
— Accidentals rate: 0.011/MHz (to keep same accidental rate as E949)
— Max scintillator decay time: 8 ns
— Energy resolution 10-15% @ 200 MeV (from E949 — study needed)
— yn discrimination desirable

* Lightyield ~1 pe/MeV
* X, <3cm; <p>>3glcc

* Energy threshold chosen as a compromise between low inefficiency
and low accidental rate

* Inorganic scintillator and/or Cerenkov radiator

Dual readout calorimetry Corrado Gatto
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ORKA endcap calorimeter

* Re-use E949 endcap calorimeter
« 25 cm undoped Csl crystals
— 13.5 X, (may not suffice for ORKA)
— 10 ns decay time (+slow component)
— AE/E = 10.6% for 7° from K _, decays (245.6 MeV)

e e

Csl

@
Time Resolution (ns)
in
I
']
g
i

[ ] 15 - -1

0.5 - -

Energy (MeV)

Corrado Gatto
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ORKA candidate barrel calorimeter technologies

Shashlyk

e Pro
e Cheap
e Well established technology

o Extensive test beam

ADRIANO with heavy glass or PbF,

e Pro
o Integrally active calorimeter
= Higher detection efficiency
e S vs C provides PID

ADRIANO in single readout mode

e Pro

» Integrally active calorimeter
» Highest detection efficiency

PXPS, June 2012

David Hitlin

C. Gatto - INFN Napoli

PXPS EM Calorimetry Summary

Sampling fluctuations
Inadequate for E <50 MeV

Large inefficiency for low energy photon

More expensive
Novel technology
Tested only at high energy (500 MeV)

Also expensive
Untested technology
No PID

Corrado Gatto
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Shashlyk issues

PR HepRApp Dats Biowsel [vorson 3201500
Ele  Opien Wwiedoes Help

Range of Compton e in Pb from low energy yis about 0.5 mm  JE S IR T e RS RRE- Re 1R L

Effective absorber thickness changes as tg16 (~2.75 at 6=20)

WLS fibers have 1/10 light yield than scifi: potential crack from
channeling in 0.9% volume (holes are 1.3 mm)
Beam test of 300 layers of 0.275mm Pb/1.5mm scintillator
« FE___~ 50-1000 MeV
85% sampling fraction (rather than 33%)
Xo ~ 3.5cm ; <p>= 275 gricm?
Use Y11 (too slow for ORKA): expect a 30% lower Ly.

Large sensitivity to neutrons with no PID

Energy resolution is very poor for Ey < 20 MeV

L1 IIII
= F=n e e e a
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Corrado Gatto
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ADR'ANO — A Dual-Readout Integrally Active Non-segmented Option

* Fully modular structure
» 2-D with longitudinal shower CoG via light
division techniques

Cells dimensions: 4x4x180 cm?3

Absorber and Cerenkov radiator: lead
glass or bismuth glass (p > 5.5 gricm3)

Cerenkov light collection: 10/20 WLS
fiber/cell

Scintillation region: scintillating fibers,
dia. Tmm, pitch 4mm (total 100/cell)
optically separated from absorber

Particle ID: 4 WLS fiber/cell (black
painted except for foremost 20 cm)

Readout: front and back SiPM (Scifi
only)

CoG z-measurement: light division
applied to SCSF81J fibers (same as
CMS HF)

Small tg(0g,q): due to WLS running
longitudinally to cell axis (6cerenkov < Osne
for slower hadrons).

Corrado Gatto
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ADRIANO light yield and hadronic resolution

Rezclution ve Scifi eampling fraction - ADRIANO Calorimeter
80
[ Stocchastic term
0 —=— ADRIANG calorimater
&0}
E’ [
P F
7 [ +
z: 40 s,
I "
LI 1
30 T _\_+_\_
H 20 Baseline +
Ba!sellml.- configurats
configuration ) .
9 0.1 .18 0.2 0.24
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2282 T 0.002248 . y |
I'\I I} 0.014?6iu. uuaﬁus 1L " 4 ‘ m 0.3325: 5-003532
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Corrado Gatto e
David Hitlin PXPS EM Calorimetry Summary June 2012 63 !#




ADRIANO EM resolution

e Compare standard Dual-readout method vs Cerenkov signal only (after electron-ID)
e Blue curve includes instrumental effects. Red curve is for perfect readout

Use only Cerenkov light

Energy Resolution for & layer 4x4 | Energy Resolution for e layer 4x4 |

0.065—
rt points typa

o 002651+ 0.0005205 ‘

0.013— i 0.004447 + 4.7e-05

0.1549 + 0.006322 ‘
£ % pairts type

0.04031+ 0.0004237

0.012 | . Hite 5 “-”533'“-”““h”13‘ ' o 0.191 + 0.006544

B 0.004388 - 8.446-05 Blue curve includes: i =l B 004362 + 0.0004798

[
F I'. s Digits = Digits

004

SiPM’s ENF
Constant noise
Fiber non-uniformity Jg _ __
14 bit ADC e WY o/ E=19%/+E ®4%
3pe threshold Z

0./ E=5%/E ®04%

1 [ 1 1 I
40 &0 80 100 120 140 160 180 200 220 M 20 40 &0 BD 100 120 140 160 180 200 220
Beam Energy (GeV) Beam Energy (GeV)

Corrado Gatto
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ADRIANO for ORKA baseline

e 150 layers; 2mm PBHS6/SFS57 + 2mm fast scintillator (BC408 or
SN88)
e X,=29cm ; <p>=3.5gr/cm® ; Depth=21X,
Detector layout: 2.5m longitudinal layers with 2-sides readout in
64 azimuthl sectors (E949/KLOE approach)
e 5.6°%sector ; 9.5-13.5 cm sector width
e Towers with back readout also considered, but potentially inefficient
Scintillator readout; 1mm BCF92 in grooves 1.6 cm apart
e A(BCF92) =350 cm ; 1000 fibers/sector bundlead in 10 units

Glass readout; 1mm BCF92 in grooves 1.6 cm apart
e A(BCF92 )= 350 cm ; 1000 fibers/sector bundlead in 10 units

Total density of fibers: 3.1/cm?
e Compare to original ADRIANO: 6.2 fibers.cm?

Corrado Gatto
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Pb glass vs. PbF,

Glass Crystals

Only Cerenkov {minor fluorescence with

Light production mechanism some SF al )

Cerenkov + scntllation

Stability vs ambiental

(temperature, humidity, etc) Sz Fo

Stability vs purity Very good if optical transmittance is OK | Very poor

Longitudinal size Up to 2m 20-30 cm max

0.8 EUR/em? 10-100 EUR/ cm?

prompt Slow to very slow (with exceptions)

1.85-2 0 (commercilly available)

2 25 (expenmental)

6.6 gricm3 ( commercially available)
7.5 grfcm3 ( experimental)

Medium (recoverable via UV annealing
for Pb-glass) or unknown (for Bi-glass)

18523

Up to 89 gr/cm?

Radiation hardness

Corrado Gatto
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Overcoming limitations of a 2D calorimeter

e ADRIANO for ORKA is a 2-D calorimeter

e Easier to build and to calibrate
e Fewer number of channels

e No cracks nor unhomogeneities due to longitudinal
segmentation

e Two possible solutions to measure z-
coordinate
e Time difference measurement
e Light division measurement

Corrado Gatto
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PID in a dual readout calorimeter

Cer Energy vs Scint Energy | l (§-CWS5+0) I

50 C ! !
455 ) 600 - ; ;
z E ~p |
a0 s00 - e ﬂ
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[ c | g ;
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E 25 ;_ ‘ B — 200 —i ; h
E“E | : ' - “
B 15%. X ; i S n SO WS SR 200 | !J'
‘ﬁ : : - | I i
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Adding the 3" dimension with time division

Already implemented for KLOE spacal (4.3m long, 0.5mm Pb, 15% sampling)
Requires 25psec time measurement on both sides (TDC/WFD)

Assume (pessimistically) the same resolution as KLOE and v,,,=17.2 cm/nsec
(for polistirene with np=1.58)

6 mm
()'_:

o =3 ps/VE(GeV)

e Or:.c,=19mm at 100 MeV
e Requires z-dependent time i
measurement corrections: SO oo

4 e coarse readoul

muE

07(2) = 07 (0)eosh(2/A) O NI T
E [MeV]

Time resolution for KLOE calorimeter

J. Lee-Franzini et al. / Nucl Instr. and Meth. in Phys. Res. A 360 (1995) 201 =205

Corrado Gatto
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Adding the 3" dimension with light division

Determine Center of Gravity of showers by ratio of front vs back scintillation light

It works because Ag,, = 3.5m

Similar to charge division methods in drift chambers with resistive wires
A technique already adopted by UA1 and ZEUSS

100 Gev pions

Front vs back Scintillation light vs true shower CoG

Instrumental effects
included in ILCroot :
SiPM with ENF=1.016

Fiber non-uniformity response =
0.6% (scaled from CHORUS)

« Threashold = 3 pe (SiPM dark
current < 50 kHz)

«  ADC with 14 bits
Constant 1 pe noise.

Ratio versus 2

back)

pa

[

frant - #pa  back) /{#pe front + #pa
k1Y

=]
[~

el
-
o

|

el

=
=
o

hRatio_pi_vs_hZ maan
Entries 5000
Mean x T0.21
Mean y 0.03982
RMS x 29.76
RMSy 0.0G008

: JE P
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Fabrication technology

Diamond machining Precision molding

Minimal R&D required Cheapest and fastest (15 min)

Room temp (min effect on ny)

Optical finishing with no extra

It allows construction of longer steps

cells i
Low temp cycle (min effect on np)

Longer fabrication process
Molds are expensives
Large waste

Lots of R&D

Corrado Gatto
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ORKA calorimeter conclusions

Three techniques are under consideration for a photon
veto/calorimeter at ORKA: 1 sampling and two integrally active

r-segmentation is preferred. Could swith to z-segmentation if light
propagation time becomes an issue

An integrally active calorimeter will easily provide at least 50%
more light yield

Thin glass/crystals are employied as active absorber: require specific
R&D

R&D already under way under the auspices of T1015 collaboration
(FNAL+INFN)

ADRIANO technique already works for HEP: need dedicated
optimization for lower energy experiment

Corrado Gatto
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Comparison of Shashlyk and ADRIANO

Scintillating inefficiency |

| Energy fraction in Scintillator |
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ORKA simulation conclusions

* | have presented very preliminary G4 simulations with
o different layouts and materials
* [nefficiency of scintillating materials is worrisome
* Transparent materials like heavy glass or crystal may help
In recovering some of these Inefficiencies
e ADRIANO Cerenkov yield at high energy is 0.16 p.e./MeV
* Working on new ADRIANO layout optimized for ORKA

Anna Mazzacane
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NN oscillations

Slow free neutron in vacuum with shielded zero magnetic field
develops probability of transformation to antineutron as

2 : : :
t | where t 1s neutron fhight time and 7 -

P =|—

n—n T - 1s oscillation time predicted by theory

When n is transformed to antineutron, the latter will annihilate
in the thin Carbon target producing a star of 5 pions (aver.) that
need to be reconstructed to the annihilation point.

2%
1.52%
6.48%

11%

28%

1%
24%
10%
10%

Yuri Kamyshkov
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Annihilation detector for NAX

tracker

neutran

Annihilation feature: 7 +C — <5?r>

* Use ideas of backgroundless ILL detector;
* That can be Vertical and Horizontal;

* Tracker for vertex to thin carbon target;

* | Calorimeter for trigger and energy reco;

* TOF before and after tracker to remove
vertices of particles coming from outside;

» \eto system to suppress cosmic bkgr;

« Trigger: Calorimeter - TOF - VETO

» Shielding to minimize (n,y) emission.

David Hitlin
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Conclusions

* There is no “perfect high energy photon detector”

* Differing requirements of individual experiments mandate experiment-
specific development
— Afoundation of generic R&D, initiated sufficiently ahead of
specific applications to bear fruit, can prove very useful in
broadening choices and optimizing configurations

* Some generic observations
— Experiments planned for the coming decade can typically exploit
reasonable extensions of known technology for their calorimeters
— Some R&D will be required for certain calorimeters to function at
Project X Stage 1
— At full Project X intensities, it may be necessary to fundamentally

rethink experimental configurations
« Extrapolations of known technologies may or may not be apropos
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Conclusions Il

* |tis likely that several proposals for both experiment-specific and
generic calorimeter R&D will emerge from these activities

* Discussions with Glen Crawford on Wednesday clarified the R&D
situation somewhat (labs vs. new FOA for universities, both in KA15),
but we need to understand a bit more to be able to move forward in a
manner responsive to Program Office priorities

— LOIs (strongly encouraged) — July 16 5:00PM EDT
— Proposals — September 10 11:59PM EDT
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KTeV Csl calorimeter — #2°4° reconstruction

Signal is 4 photon showers in Y & .
calorimeter ( . Eﬁ@
* Measure position and energy - e

* Use pion mass constraint to
-reconstruct decay vertex " ﬁj& =

- fEic @ s
- . - : m
|

Elizabeth Worcester
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Small details matter

1}

Simulation: Wrapping |

Erec/Egen vs Local X
1.005 - . : :
1.004
1.003
1.002
1.001

) (o

- 075 05 025 0 025 05 O 125 3100 pure Csl crystals

Pmllirtice viewed by PMTs
s : ; : : » Small crystals 2.5x2.5x50 cm?
* Large crystals 5.0x5.0x50 cm?

Calibrated by in-situ laser
system and momentum
analyzed electrons from
Ke3 decays

* Position resolution

PRTEE T SRR S ST S WY T IR TSI B S W TR ™ ~1'2mm(sma“cwstals)
25 -2 -15 -1 095 0 05 1 1.5 2 25 o
Large Blocks * ~2.4 mm (large crystals)

* Energy resolution ~0.6%
* Absolute energy scale ~0.04%

; SOTUTE G

- _"4
5

Q1o

=
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KTeV calorimeter - conclusions

KTeV Csl calorimeter extremely successful
* E/p resolution ~0.6%
* Position resolution 1.2/2.4 mm

* Longitudinal response uniform to ~5%

_ Before final
* Transverse response uniform to ~1% .
corrections
* Energy non-linearity <1%
» Reconstructed kaon mass linear within <200 keV After final

* Absolute energy scale known to ~0.04% corrections

Design considerations

* Reduce complications when possible

Redundant readout/easy access for replacement critical

Dead material important

Ability to reconstruct angles would have been great (timing? 3d?)

Extensive offline analysis required
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